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According to the classical theory of Weiss, Landau, and Lifshitz, in a ferromagnetic body
there is a spontaneous magnetization field m, such that ∥m∥ = τ0 = const in all points
of this material Ω. In any stationary configuration, this ferromagnetic body consists of
areas (Weiss domains) in which the magnetization is uniform (i.e. m = const) separated
by thin transition layers (Bloch walls). Such stationary configuration corresponds to
the minimum point of the magnetostrictive free energy E. We are considering an elastic
magnetostrictive body in our paper. The elastic magnetostrictive free energy Eδ depends
on a small parameter δ such that δ → 0. As usual, the displacement field is denoted by
u. We will show that each sequence of minimizers (ui,mi) contains a subsequence that
converges to a couple of fields (u0,m0). By means of a Γ-limit procedure we will show
that this couple (u0,m0) is a minimizer of the new functional E0. This new functional
E0 describes the magnetic-elastic properties of the body with microstructure.

Keywords: homogenization, Γ-limit procedure, existence of a minimum for free energy,
elasticity with microstructure.

1. Introduction

Ferromagnetic behavior, in particular the presence of spontaneous magnetization,
can be explained by the theory of Weiss, Landau, and Lifshitz. This states that,
in any stationary configuration, a ferromagnetic body breaks up into uniformly
magnetized regions (Weiss domains) separated by thin transition layers (Bloch
walls). The magnetization field m has fixed modulus and variable orientation
∥m(x)∥R3 = τ0 = const in all points x of this ferromagnetic body Ω. Such sta-
tionary configuration corresponds to the minimum point of the magnetostrictive
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free energy E . The model of free energy E is equivalent to the model considered in
[1] (formulae (2.6), (2.7)).

The asymptotic behavior of magnetostrictive materials has been considered in
[2] in the case of a rigid body in which elastic energy has been omitted. In our
paper, the elastic magnetostrictive free energy Eδ depends on a small parameter δ
such that δ → 0. As usual, the displacement field is denoted by u. We will show
that each sequence of minimizers (un,mn) contains a subsequence that converges
to a couple of fields (u0,m0). By means of a Γ-limit procedure we will show that
this couple (u0,m0) is a minimizer of the new functional E0. This new functional
E0 is the Γ-limit of the sequence Eδ. This Γ-limit E0 describes the magnetic-elastic
properties of the body with microstructure, equivalently as described in [3].

The main purpose of the work is to show that the asymptotic form of the
magnetic-elastic model (formulated in the paper [1]) is a model of an elastic material
with a microstructure (given in the presentation [3]).

2. The physical model

Let us consider a ferromagnetic body occupying a bounded domain Ω of the Eu-
clidean space R3. Assume also that the body has a uniform temperature below its
Curie point. We do not assume that the considered body is homogeneous. Under
such conditions, on a sufficiently small, but macroscopic scale, the magnetization
field m has a prescribed constant modulus, i.e.:

∥m(x)∥ = τ0 = const (1)

in all x ∈ Ω, and variable orientation. This scale is still larger than that of the
lattice structure, so the field m can be assumed to vary smoothly in space.

The ferromagnetic behavior is essentially due to the occurrence of a force which
tends to align the magnetic field. This corresponds to an energy contribution de-
pending on the space derivatives of m. In a simplified form so called exchange
energy is given by:

a

∫
Ω

∥∇m(x)∥2R3×3 dx (2)

where a > 0. The non-convex anisotropy density φ(m) defines the anisotropic
energy: ∫

Ω

φ(m(x))dx (3)

Exterior magnetic field f defines the energy:

−
∫
Ω

f(x) ◦m(x)dx (4)

where ◦ is the scalar multiplication in R3.
The considered body, occupying Ω, is clamped on a part Γ2 of the boundary ∂Ω

of Ω. We assume that Γ2 ̸= ∅. Let Γ1 = ∂Ω−Γ2. For a boundary force G : Γ1 → R3

its work is defined by the integral:

−
∫
Γ1

G(x) ◦ u(x)dµ(x) (5)
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where µ is the 2-dimensional measure on ∂Ω. For a volume force F : Ω → R3 its
work is defined by the formula:

−
∫
Ω

F (x) ◦ u(x)dx (6)

The elastic potential at the point x ∈ Ω is defined by j (x, ε) for any symmetric
matrix ε ∈ R3×3. In particular, we can assume that 2j (x, ε) = ε ◦ C(x)ε, where
C(x) is the tensor of elastic moduli in the point x. The potential w (defined in R3)
represents the magnetostatic energy:

1

2

∫
R3

∥∇w(x)∥2R3 dx (7)

The magnetostrictive free energy Eδ consists of seven terms. These terms are
known as the exchange energy, the anisotropic energy, the energy of the external
field, magnetostatic energy, work of volume and boundary force, and the elastic-
magnetic energy. The magnetostrictive free energy, below the Curie point, is defined
by:

Eδ(u,w ,m) = δa
∫
Ω
∥∇m(x)∥2R3×3 dx+ 1

δ

∫
Ω
φ(m(x))dx

−
∫
Ω
f(x) ◦m(x)dx+ 1

2

∫
R3 ∥∇w(x)∥2R3 dx−

∫
Ω
F (x) ◦ u(x)dx

−
∫
Γ1

G(x) ◦ u(x)dµ(x) +
∫
Ω
j (x, ε(u(x))− ε0(m(x)))dx

(8)

where ε0(m(x)) is the free or spontaneous magnetostrain tensor corresponding to
the magnetization m (in the case of cubic crystal lattice the most general quadratic
form of ε0(m) is given in [1], formula (2.4)). As usual 2ε(u) = (∇u +∇uT ). The
magnetostatic potential w satisfy Maxwell’s equation:

div(−∇w +mχΩ) = 0 (9)

in R3, where mχΩ(x) = m(x) if x ∈ Ω and mχΩ(x) = 0 if x /∈ Ω. Let:

S2
τ0 = {ξ ∈ R3 : ∥ξ∥ = τ0 > 0} (10)

We consider sequence of free energies Eδ where δ → 0. Then for the Γ-limit E0

of the sequence {Eδ}, the minimum point m0 of E0 is a discontinuous function, see
[2], pages 182-183. The field m0 satisfies:

φ(m0(x)) = inf
m
{φ(m) : m ∈ S2

τ0} (11)

for all x ∈ Ω. That is the minimum point m0 of E0 is a spontaneous magnetization
field uniform on regions, separated by two-dimensional transitional surfaces.

The Γ-convergence method is based on the fact that we are considering the
sequence of functionals Eδ (for δ ↘ 0) such that the exchange energy tends to 0 and
the anisotropic energy tends to infinity (except for the minimum points of magnetic
field). The Γ-limit E0 of the sequence {Eδ}, at the fixed point (u,w ,m) is equal to
the lower limit of all possible sequences Eδ(uδ,wδ,mδ) where (uδ,wδ,mδ) converges
to (u,w ,m). That is, the value of E0(u,w ,m) is equal to infimum for all limits
lim infδ↘0 Eδ(uδ,wδ,mδ) (so infimum after all convergent sequences (uδ,wδ,mδ) →
(u,w ,m) and after all sequences of functionals Eδ, where δ ↘ 0).
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3. Main results

At the beginning we will give some mathematical definitions and assumptions, which
specify the problem under consideration. It is necessary for the theorems to be
scientific in nature, that is, they can be verified.

Let us fix some notations. We assume that the domain Ω is a bounded, con-
nected, not empty, open, Lipschitz set in R3. Let TS be the space of symmetric
3 × 3 tensors (TS ⊂ R3×3). The fields and potentials, considered in formulae (8)
and (9), fulfill the following assumptions.

Assumption 1. The potential j : Ω × TS → R is a convex normal integrand,
such that

1. The function ε 7→ j (x, ε) is convex and lower semi-continuous for almost every
x ∈ Ω,

2. there exists a Borel function j̃ : Ω × TS → R such that j̃ (x, ·) = j (x, ·) for
almost every x ∈ Ω.

3. Moreover, we assume that there exist ã, Ã ∈ R and exist b,B ∈ R, such that
B ≥ b > 0 and:

ã + b ∥ε∥2R3×3 ≤ j (x, ε) ≤ Ã+ B ∥ε∥2R3×3 (12)

for every x ∈ Ω and every ε ∈ TS .
Assumption 2. Let S2

τ0 be defined by the formula (10). Moreover, let φ : S2
τ0 →

[0,∞) be a given continuous function and assume that there exists {α, β} ⊂ S2
τ0 ,

α ̸= β such that:

{ξ ∈ S2
τ0 : φ(ξ) = 0} = {α, β} (13)

Assumption 3. For all x ∈ Ω and all m ∈ S2
τ0 , ε0(m)(x) is a symmetric 3 × 3

matrix. That is ε0(m)(x) ∈ TS for all x ∈ Ω and all m ∈ S2
τ0 . The space of L∞

functions, values in TS , is denoted by L∞(Ω, TS). There exists q ≥ 1, q ∈ R, such
that the function m(·) 7→ ε0(m)(·) is continuous from the space L∞(Ω)3, endowed
with ∥·∥Lq , to the space L∞(Ω, TS), endowed with ∥·∥L2 . Moreover, let exists
M ∈ R such that

∥∥ε0(m)(x)
∥∥
R3×3 < M for every x ∈ Ω.

Assumption 4. The function f ∈ Lq(Ω)3 for some q ≥ 1 (q < ∞).
Assumption 5. F ∈ L2(Ω)3 and G ∈ L2(Γ1)

3, and µ(Γ2) > 0.
As is well known, for every m ∈ L2(Ω)3 Maxwell’s equation admits a unique

solution wm in H1(R3). The linear mapping m 7→ wm is continuous from L2(R3)3

(endowed with ∥·∥L2) to H1(R3)3 (endowed with ∥·∥H1). Then we can consider
Eδ only for uδ and mδ variables (because wδ is a unique solution of the Maxwell
equation).

We say that the sequence Eδ is Γ-convergent (or, more precisely, Γ(weak in
H1(Ω)3 and L1(Ω)3)-convergent) to E0, and we then write:

E0 = Γ− lim
n→∞

Eδn (14)

if both conditions (15) and (16) below hold:
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For any sequences {un} and {mn} such that un → u0 weakly in H1(Ω)3 and
mn → m0 in ∥·∥L1(Ω), and δn ↘ 0 we have:

E0(u0,m0) ≤ lim inf
n→∞

Eδn(un,mn) (15)

For any functions u ∈ H1(Ω)3 and m ∈ L1(Ω, S2
τ0) there exist sequences {un} ⊂

H1(Ω)3 and {mn} ⊂ H1(Ω, S2
τ0), and {δn} ⊂ (0,∞) such that un → u weakly in

H1(Ω)3 and mn → m in ∥·∥L1(Ω), and δn ↘ 0, and:

lim
n→∞

Eδn(un,mn) = E0(u,m) (16)

The anisotropy density φ(·) : S2
τ0 → [0,+∞) is zero only in points {α, β} ⊂ S2

τ0 .
Let:

Z = {α, β} = {ξ ∈ S2
τ0 : φ(ξ) = 0} (17)

Consider the set:

U0 = {m ∈ L1(Ω,R3) : m(x) ∈ Z} (18)

For any m ∈ U0 consider the set:

Am = {x ∈ Ω : m(x) = α} (19)

Theorem 1. The Γ-limit of Eδ is given by:

E0(u,w ,m) = 2c0PΩ(Am)

−
∫
Ω
f(x) ◦m(x)dx+ 1

2

∫
R3 ∥∇w(x)∥2R3 dx−

∫
Ω
F (x) ◦ u(x)dx

−
∫
Γ1

G(x) ◦ u(x)dµ(x) +
∫
Ω
j (x, ε(u(x))− ε0(m(x)))dx

(20)

where:

c0 = inf

{∫ 1

0
φ
1/2 (γ(t)) ∥γ′(t)∥R3 dt : γ ∈ C1([0, 1],R3)

γ(t) ∈ S2
τ0 , γ(0) = α, γ(1) = β

} (21)

In view of Maxwell’s equation w is determined by m and PΩ(A) is the perimeter of
the set A ⊂ Ω in the sense of De Giorgi (see [4]).

We recall that the perimeter of a measurable set A coincides with the surface area
of the boundary ∂A, if the boundary is regular (for example, Lipschitz continuous).
Otherwise, for more general sets, called of “finite perimeter”, we have:

PΩ(A) = µ(∂∗A ∩ Ω) (22)

where µ is the 2-dimensional Hausdorff measure and ∂∗A ⊂ ∂A is the reduced
boundary of A, kind of “measure theoretical boundary” (see [4]). Of course, the
boundary ∂A of A is a two-dimensional surface. Analogously to the proof of theorem
5.1 from [2], we hope to show that the boundary of the set A is the sum of 2-
dimensional surfaces of class C1.
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Below we prove the condition (15). Let {un} ⊂ H1(Ω)3, u0 ∈ H1(Ω)3, {mn} ⊂
H1(Ω)3 and m0 ∈ L1(Ω)3. Moreover, let un → u0 weakly in H1(Ω)3 and mn → m0

in ∥·∥L1(Ω). We prove the condition (15), for the functional:

m 7→ δa

∫
Ω

∥∇m∥2R3×3 dx+
1

δ

∫
Ω

φ(m)dx+
1

2

∫
R3

∥∇w∥2R3 dx (23)

exactly as in the paper [2]. Note that w is uniquely determined from the Maxwell
equation, for given m.

In view of: ∫
Ω
∥mn −m0∥qR3 dx ≤

∫
Ω
(2τ0)q−1 ∥mn −m0∥R3 dx

≤ (2τ0)q−1
∫
Ω
∥mn −m0∥R3 dx → 0

(24)

for all q ≥ 1, q < ∞, we get mn → m0 in ∥·∥Lq(Ω) for all q ≥ 1, q < ∞. Due to
Assumption 4:

−
∫
Ω

f(x) ◦mn(x)dx → −
∫
Ω

f(x) ◦m0(x)dx (25)

We will prove the formula (25) in the case where f ∈ L1(Ω)3. We define fk (x) =
f(x) if ∥f(x)∥R3 ≤ k and fk (x) = 0 if ∥f(x)∥R3 > k , for k ∈ N. Since f ∈ L1(Ω)3,
it follows that the 3-dimensional measure of:

Bk = {x ∈ Ω : ∥f(x)∥ > k} (26)

tends to 0 as k → ∞. Moreover:∫
Bk

∥f(x)∥R3 dx → 0 (27)

if k → ∞. Since ∥mn(x)∥R3 = τ0 for almost every x ∈ Ω and mn → m0 in L1, it
follows that ∥m0(x)∥R3 = τ0 for almost every x ∈ Ω. The functions fk ∈ L∞(Ω)3,
for all k ∈ N, therefore;∫

Ω

fk (x) ◦mndx →
∫
Ω

fk (x) ◦m0(x)dx (28)

as n → +∞, for all set k ∈ N. For any ε̃ > 0 we can find k̃ ∈ N such that∫
Bk̃

f(x) ◦mn(x)dx ≤
∫
Bk̃

∥f(x)∥R3 ∥mn(x)∥R3 dx

= τ0
∫
Bk̃

∥f(x)∥R3 dx < τ0ε̃
(29)

Moreover: ∫
Bk̃

f(x) ◦m0(x)dx ≤
∫
Bk̃

∥f(x)∥R3 ∥m0(x)∥R3 dx ≤ τ0ε̃ (30)



Asymptotic Behavior of Magnetostrictive Elasticity ... 757

Then: ∣∣∫
Ω
f(x) ◦mn(x)dx−

∫
Ω
f(x) ◦m0(x)dx

∣∣
≤

∫
Bk̃

∥f(x)∥R3 ∥mn(x)−m0(x)∥R3 dx

+
∣∣∣∫Ω−Bk̃

f(x) ◦mn(x)dx−
∫
Ω−Bk̃

f(x) ◦m0(x)dx
∣∣∣

≤
∫
Bk̃

∥f(x)∥R3 (∥mn(x)∥R3 + ∥m0(x)∥R3) dx

+
∣∣∣∫Ω−Bk̃

f(x) ◦mn(x)dx−
∫
Ω−Bk̃

f(x) ◦m0(x)dx
∣∣∣

(31)

Due to (29), (30) and (28), for given k̃ ∈ N we can take n ∈ N so large that the
inequality (31) can be estimated from above by 2τ0ε̃+ ε̃ (because (29) holds for all
n ∈ N). Since ε̃ > 0 can be taken as small as we want, the formula (25) is proved
in the case of f ∈ L1.
We return to the proof of the theorem 1. Since un → u0 weakly in H1(Ω)3, we get:

−
∫
Ω

F (x) ◦ un(x)dx → −
∫
Ω

F (x) ◦ u0(x)dx (32)

see Assumption 5. We can prove that:

−
∫
Γ1

G(x) ◦ un(x)dµ(x) → −
∫
Γ1

G(x) ◦ u0(x)dµ(x) (33)

if un → u0 weakly in H1(Ω)3, where u|Γ1
is the trace of u ∈ H1(Ω)3 (see [5, 6])

and G ∈ L2(Γ1)
3. Due to Assumption 3, ε0(mn) → ε0(m0) in ∥·∥L2 . Since the

functional:

ε 7→
∫
Ω

j (x, ε)dx (34)

is lower semi continuous in weak L2 topology (see [7]), it follows that:

lim
n→∞

∫
Ω

j (x, ε(un)− ε0(mn))dx ≥
∫
Ω

j (x, ε(u0)− ε0(m0))dx (35)

Therefore, the condition (15) holds.
Now we will show that the condition (16) holds. According to [2] we show that

for any function m ∈ L1(Ω, S2
τ0) there exists a sequence {mn} ⊂ H1(Ω)3 such that

mn → m in ∥·∥L1(Ω). In view of the formula (24), we have mn → m in ∥·∥Lq(Ω) for

all q ≥ 1, q < ∞. There exists a sequence solutions {wn} of Maxwell’s equations,
for the parameters {mn}. Moreover, wn → w in ∥·∥H1 and w is the solution of
Maxwell’s equation for m. Due to [2] (proof of Theorem 2.4), the found sequences
{mn} and {wn} satisfy the condition:

limn→∞ δna
∫
Ω
∥∇mn∥2R3×3 dx+ 1

δn

∫
Ω
φ(mn)dx+ 1

2

∫
R3 ∥∇wn∥2R3 dx

= 2c0PΩ(Am) + 1
2

∫
R3 ∥∇w(x)∥2R3 dx

(36)
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For given u ∈ H1(Ω)3 we take sequence {un} such that un = u for all n ∈ N.
Since:

ε̃ 7→
∫
Ω

j (x, ε(u(x))− ε̃)dx (37)

is lower semi continuous in weak L2 topology (see [6]), it follows that the functional
(37) is lower semi continuous in ∥·∥L2 . Due to (12), the functional (37) reaches finite
values for every ε̃ ∈ L2(Ω, TS) (i.e. the effective domain of (37) is equal to the space
L2(Ω, TS)). Since the functional (37) is convex, it follows that (37) is continuous in
the interior of the effective domain of (37), see [8]. So, (37) is continuous in ∥·∥L2 .
Therefore the condition (16) holds for the functional E . Theorem 1 is proven.

We can show that for every δ > 0 there exists minimum point for Eδ. Let for Eδ

the minimum point be equal to (uδ,wδ,mδ) ∈ (H1(Ω)3,H1(R3),H1(Ω, TS)). Now
we will show the existence of a minimum point for E0.

Theorem 2. Let E0 = Γ− limn→∞ Eδn and {(uδn ,wδn ,mδn)} be the sequence
of minimum points for the sequence of functionals {Eδn}. Moreover, let δn ↘ 0 as
n → ∞. Then there exists a subsequence {(uδnk

,wδnk
,mδnk

)} of {(uδn ,wδn ,mδn)}
and exists (u0,w0,m0) ∈ H1(Ω)3×H1(R3)×L1(Ω,R3), such that uδnk

→ u0 weakly

in H1(Ω)3, mδnk
→ m0 in ∥·∥L1(Ω), wδnk

→ w0 in ∥·∥H1 . Moreover:

lim
n→∞

Eδnk
(uδnk

,wδnk
,mδnk

) = E0(u0,w0,m0) (38)

and (u0,w0,m0) is a minimum point for E0.
According to [2] we show that there exists a subsequence {mδnt

} of {mδn} and
exists m0 such that mδnt

→ m0 in ∥·∥L1(Ω). In view of the formula (24), we

have mδnt
→ m0 in ∥·∥Lq(Ω) for all q ≥ 1, q < ∞. Then ε0(mδnt

) → ε0(m0) in

∥·∥L2(Ω), see Assumption 3. Due to Maxwell’s equation, wδnt
→ w0 ∈ H1(R3) in

∥·∥H1 where wδnt
(respectively w0) is the solution of the Maxwell’s equation with

the parameter mδnt
(respectively m0). Since the set

∥∥ε0(mδnt
)
∥∥
L2(Ω)

is bounded

(see Assumption 3) and since the condition (12) holds, it follows that the sequence∥∥ε(uδnt
)
∥∥
L2(Ω)

is bounded (because u 7→
∫
Ω
F (x)◦u(x)dx +

∫
Γ1

G(x)◦u(x)dµ(x) is a

linear, continuous functional and the sequence
∫
R3

∥∥∇wδnt

∥∥2 dx is bounded). Then
there exists subsequence {(uδnk

,wδnk
,mδnk

)} of the sequence {(uδnt
,wδnt

,mδnt
)}

such that uδnk
→ u0 weakly in H1(Ω)3, because ε(uδnt

) is bounded in L2(Ω)3×3

and Ω is clamped on Γ2. By virtue of the lower semi continuity of the considered
functionals, we obtain:

lim inf
k→∞

Eδnk
(uδnk

,wδnk
,mδnk

) ≥ E0(u0,w0,m0) (39)

Due to the condition (16) (of the definition of Γ-convergence) in (39) we have
equality, because (uδnk

,wδnk
,mδnk

) is a minimum point for Eδnk
, for all k ∈ N. So

we’ve proved Theorem 2.

4. Final remarks

The obtained functional E0 describes the magnetic-elastic properties of the ferro-
magnetic material with microstructure. Region occupied by considered body con-
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sists of regions in which the magnetization is uniform (i.e. ε0(m(x)) = const in
these regions) separated by transitional surfaces, represented by 2c0PΩ(Am) in E0.
For any stationary configuration and for a fixed magnetic field m investigated func-
tional E0 describes a ferromagnetic body in a way which is equivalent to the de-
scription given in [3]. From the other hand side the model investigated in [3] is
formulated as differential equations for physical fields corresponding to which are
minimizers of the variational problem investigated in this paper. That is why results
obtained in this article can be treated as a proof of the existence of solutions for
the problem formulated in [3]. Hence model equations taken from [3] together with
variational problem investigated in this paper consist a certain physically complete
description of ferromagnetic solid made of the considered microstructural mate-
rial superimposed by the locally uniform magnetization (i.e. ε0(m(x)) = const in
regions separated by transitional surfaces represented by 2c0PΩ(Am) in E0).
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